RISING GRADE 9 SUMMER PACKET

DUE ON THE FIRST DAY OF SCHOOL

The problems in this packet are designed to help you review topics from previous mathematics courses that are essential to your success in Integrated Algebra I. You are expected to bring this completed packet to class on the first day of school. In addition, this packet will count as part of your first quarter grade. Upon returning, you will be ASSESSED on the content of this packet. All contents outlined in the packet are Integrated Algebra I objectives. Neatly SHOW YOUR WORK on a separate sheet of paper.

1 Find the sum of the four integers below. Hint: Use the number line below.
$4,-5,2,-1$

\square

2 Use the number line. Enter the integer value that point D represents.

\square

3 Write the correct answer.
Convert the following fraction into decimal.
$\frac{15}{100}$
\square

4 Write the fraction that expresses the same value as the decimal $0 . \overline{12}$.
\square

5 Find a decimal that is equal to each fraction.
(a)
$\frac{721}{100}$
\square
(b) $\frac{7}{5}$

(c) $\frac{1}{6}$

6 Express the repeating decimal $0 . \overline{3}$ as a fraction.
\square

7 Ana runs $\frac{3}{4}$ of a mile in $\frac{1}{10}$ of an hour (which is 6 minutes). Assuming she runs at a constant speed, what is her speed in miles per hour? Express your answer as an integer, decimal, or simplified fraction.
\square

8 Convert 95% into a fraction. Write the answer in the simplest form.
\square

9 Simplify.
, 16
\square

10 Simplify.
$\sqrt[3]{1}$
\square

11 Simplify.
, $/ 25$
\square

12 Find the difference. Write your answer in scientific notation.

$$
\left(9.7 \times 10^{6}\right)-\left(2.5 \times 10^{6}\right)
$$

\square

13 Find the sum. Write your answer in scientific notation.

$$
\left(3.85 \times 10^{8}\right)+\left(4.1 \times 10^{8}\right)
$$

\square
\square

15 Find the product. Write your answer in scientific notation.

$$
\left(6.9 \times 10^{5}\right) \times\left(3.1 \times 10^{-9}\right)
$$

\square

16 Write in scientific notation: 0.0121
\square

17 Find the quotient. Write your answer in scientific notation.

$$
\left(5.6 \times 10^{8}\right) \div\left(2.0 \times 10^{2}\right)
$$

\square

18 Write in scientific notation: 4, 733, 800
\square

19 The diameter of a certain virus is 0.000000028 meter. Write this number in scientific notation.
\square

20 Find the value of x that makes the equation below true.
$\frac{1}{3}(x-12)=2 x+1$
\square

21 Solve the given equation for z and write the correct answer.
$4 z+9=29$
\square
$8-2(3 x+8)=10$
\square

23 Solve the following equation for t and write the solution.
$16 t-4 t=72$
\square

24 Find the equation represented by the following algebraic tiles. Combine like terms on both sides of the equation.

\square

25 Write an equation that represents the relationship between the given values of x and y.

x	2	4	6	8
y	11	22	33	44

\square

26 Determine the solution of the equation $4 x+5=10-x$ and write the correct answer.
\square

27 What value of x is the solution to the linear system below?
$\left\{\begin{array}{l}4 x-5 y=24 \\ y=2 x\end{array}\right.$
\square

28 Solve the system of equations below using the substitution method
$\left\{\begin{array}{l}x=2 y+11 \\ -7 x-2 y=-13\end{array}\right.$

Show all work, make sure to write your final answer in the correct format. If you get no solution. Type in 0 .
\square
$\frac{7-2 x}{6}=\frac{x-5}{1}$
$x=$

30 Determine the slope from the table given below.

x	y
4	6
5	12
6	18
7	24

31 Determine the slope of the line passing through $(4,-2)$ and $(7,10)$.
\square

32 PROFICIENT (5 points)

Write the equation of the line in slope-intercept form with the following slope and y intercept:
slope: $\frac{5}{6}$
y-intercept: $(0,-1)$
\square

33 Find the slope of the line.

\square

Write the equation of the line in slope-intercept form with the following slope and y-intercept

$\mathrm{m}=-\frac{2}{7}$
b=4
\square

35 Write the equation of the line in slope-intercept form given the slope and a point.
slope: $\frac{3}{4}$
point: $(4,5)$
\square

36 Find the slope of the equation given below.
$y=3 x+4$
Write the correct answer.
\square

37 Add the polynomials $\left(-4 x^{4}+3 x^{2}+14\right)+\left(-3 x^{4}-14 x^{2}-8\right)$
\square

38 Multiply the polynomials: $\left(x^{2}-7 x-6\right)\left(7 x^{2}-3 x-7\right)$
\square

39 Subtract the two polynomials. Write your answer in standard form.
$5 x\left(3 x^{5}-2 x^{4}-5\right)-3\left(2 x^{4}+x^{2}-10\right)$
\square

40 After simplifying, what is the leading coefficient of the polynomial?
$6 x(2 x-1)+4\left(x^{2}-3 x+3\right)-x(-4 x-6)$
\square

41 Put the following polynomial into standard form:
$11+7 x-14 x^{2}+x^{5}$
\square

42 Write the polynomial in standard form.
(a)
$8 x-6 x^{2}-3 x^{3}$

(b) Identify the leading coefficient of the polynomial.
\square
(c) Identify the degree of the polynomial.
\square

43 What is the degree of the following polynomial:
$5 x^{2} y-6 x y+4 x$
\square

44 Factor completely over the set of integers: $16 x^{4}-81$
(a) \square
(b) Sara graphed the polynomial $y=16 x^{4}-81$ and stated "All the roots of $y=16 x^{4}-81$ are real." Is Sara correct? Explain your reasoning.
\square

45 Find the difference.

$$
\left(x^{4}-2 x^{2}+6 x\right)-\left(14-6 x^{2}-8 x\right)
$$

\square

46 Subtract $5 x^{2}+2 x-11$ from $3 x^{2}+8 x-7$. Express the result as a trinomial.
\square

47 Calculate the product and write the correct answer.
$(2 x+7)(x-3)$

$x^{2}-4 x-8=0$

Quadratic formula $=\frac{-b \pm \sqrt{ } / b^{2}-4 a c}{2 a}$

49 Quadratic function h can be used to model the height in feet of a rocket from the ground t seconds after it was launched. The graph of the function is shown.

What is the maximum value of the graph of the function?
\square

50 Solve the quadratic equation below for the exact values of x.

$$
4 x^{2}-5=75
$$

\square

51 Solve the equation by factoring.
Report solution(s) in order from least to greatest. Separate solutions with a comma. Exact answers only (no decimal answers).
$3 x^{2}-16 x-12=0$

52 Solve using the quadratic formula $2 x^{2}-7 x-3=0$

Write the equation for the quadratic shown in the form $y=a(x-h)^{2}+k$.

$$
[-2,8] b y[-1,9]
$$

\square

54 Factor completely:
$3 x^{2}+20 x+25$
\square

55 What is the positive solution to $2 x^{2}-8 x-42=0$?
\square

56 The admission at Space Tag is $\$ 10$ and it costs $\$ 7$ per laser tag game. Jacob has a total of $\$ 50$ to spend. What is the greatest number of laser tag games he will be able to play?
\square

57 What value for c will complete the perfect square trinomial?

$$
x^{2}-16 x+\square=0
$$

58 What is the x-intercept of the line $6 x-3 y=24$?
\square

59
Write a compound inequality for the graph below.

\square

60 When an apple is dropped from a tower 256 feet high, the function $h(t)=-16 t^{2}+256$ models the height of the apple, in feet, after t seconds. Determine, algebraically, the number of seconds it takes the apple to hit the ground.
\square

61 Rewrite the following standard form linear equation into slope-intercept form. Write the answer starting with $y=$

$$
12 x-4 y=-12
$$

\square

62 Write the polynomial in standard form.
(a)

$$
8 x-6 x^{2}-3 x^{3}
$$

\square
(b) Identify the leading coefficient of the polynomial.
\square
(c) Identify the degree of the polynomial.
\square
(a)

Domain: \{ \qquad \}
\square
(b) Is the function discrete or continuous?
(A) discrete
(B) continuous
(a)

\square
(b) Then determine whether the above relation is a function.
(A) Function
(B) Not a function

65 select all exponential functions:
A $y=\frac{3}{2} x+3$
B $y=3 \cdot(2)^{x}$
c $f(x)=.5 \cdot(3)^{x}$
D $y=3 x$
E $f(x)=2 \cdot(2)^{x}$
F $f(x)=4.5$

66 Which statement is true about the graphs of exponential functions?

(A) The graphs of exponential functions never exceed the graphs of linear and quadratic functions
(B) The graphs of exponential functions always exceed the graphs of linear and quadratic functions
(C) The graphs of exponential functions eventually exceed the graphs of linear and quadratic functions.

D The graphs of exponential functions eventually exceed the graphs of linear functions but not quadratic functions.

(A) $y=\frac{1}{2}(2)^{x}$
(B) $y=2\left(\frac{1}{2}\right)^{x}$
(C) $y=\left(2 \cdot \frac{1}{2}\right)^{x}$
(D) $y=2(5)^{x}$

68 In the second quadrant, which of the trig functions would be negative? Select all that apply!
A sine
B cosine
C tangent
D cosecant
E secant
F cotangent

69 Which of the following trig functions are NOT directly related in the same Pythagorean Identity
(A) \sin and \cos
(B) tan and cot

C tan and sec
(D) cot and csc

$?=$ \square
(3) Be sure to include the degree symbol in your answer. (X°)

71 Find the angle measure to the nearest degree.
$\tan (V)=7.1154$
$V=$ \square
(3) Be sure to include the degree symbol in your answer. (X°)

72 Point $P(-8,-15)$ is a point on the terminal side of θ in standard position. Enter the exact, simplified value of each of the six trig functions for θ.
Then find θ in both radians and degrees.

$$
39
$$

\square
(3) Be sure to include the degree symbol in your answer. $\left(X^{\circ}\right)$

74
Determine whether the angles are adjacent angles, a linear pair, or vertical angles.

Some pairs of angles may have more than one relationship.

Angle	Adjacent angles	Linear pair	Vertical angles
$\angle 5$ and $\angle 6$	\square	\square	\square
$\angle 5$ and $\angle 9$	\square	\square	\square
$\angle 5$ and $\angle 8$	\square	\square	\square

A $\angle 1, \angle 6$
B $\angle 2, \angle 4$
C $\angle 2, \angle 7$
D $\angle 3, \angle 6$
E $\angle 3, \angle 8$
F $\angle 4, \angle 8$

76 Complementary angles
(A) are congruent
(B) add up to 90 degrees
(C) add up to 180 degrees
(D) add up to 360 degrees

77 Supplementary angles
(A) are congruent
(B) add up to 90 degrees
(C) add up to 180 degrees
D) add up to 360 degrees

78 Vertical angles
(A) are congruent
(B) add up to 90 degrees
(C) add up to 180 degrees
(D) add up to 360 degrees

(A) $<1 \&<2$
(B) $<2 \&<4$
(C) $<5 \&<7$
(D) $<6 \&<8$

80 Match the following pair of angles with their respective definitions.

DRAG \& DROP THE ANSWER

GROUP 1

Alternate Interior Angles Corresponding Angles Alternate Exterior Angles Alternate Interior Angles

81
Match the following angles with their appropriate description.

> DRAG \& DROP THE ANSWER
> Two angles whose sum is 90 degree
> Two angles that have a common vertex and a shared side with no common interior points.

Two angles whose sum is 180 degree

82 Determine which of the following pair of angles are complementary, supplementary, or neither.

Pair of angles	Complementary angles	Supplementary angles	Neither
135° and 45°	\square	\square	\square
55° and 35°	\square	\square	\square
55° and 45°	\square	\square	\square
77° and 13°	\square	\square	\square

83 Which triangle congruence theorem could you use to prove the following triangles congruent?

(A) Side Angle Side

B Angle Side Side
(C) Hypotenuse Leg Theorem
(D) Angle Angle Side

Angle-Side-Angle
Side-Side-Side
Side-Angle-Side
Angle-Angle-Side

Congruence rule:

DRAG \& DROP THE ANSWER

$\frac{1}{3}$
3
$\frac{2}{3}$

$\angle M \cong \angle A$	True
$\angle B \cong \angle R$	True
$\overline{C A} \cong \overline{M T}$	False
$\overline{B C} \cong \overline{T R}$	Frue
True	False
	False

DRAG \& DROP THE ANSWER

$V W X Y$
$V Y X W$
$X Y V W$

88

Parts of triangle BQR	Parts of triangle KLM
B	1
RB	2
R	
QR	3

A $\frac{15}{9}=\frac{12}{x}$
B $\quad \frac{21}{x}=\frac{35}{30}$
c $\frac{15}{x}=\frac{35}{21}$
D $\quad \frac{30}{x}=\frac{15}{35}$

90 Which congruence statement correctly indicates that the two triangles at right are congruent?

(A) $\triangle X Y Z \cong \triangle N Q P$
(B) $\triangle X Y Z \cong \triangle Q N P$
(C) $\triangle X Y Z \cong \triangle N P Q$
(D) $\triangle X Y Z \cong \triangle P Q N$

Describe the series of translations that move $\overline{T U}$ to $\overline{T^{\prime} U^{\prime}}$

DRAG \& DROP THE ANSWER

4 units right and 10 units up
4 units down and 12 units up
4 units right and 12 units up
4 units left and 12 units down

$92 \triangle R S V$ has coordinates $R(2,1), S(3,2)$, and $V(2,6)$. A translation maps point R to R^{\prime} at $(-4,8)$. What are the coordinates for S^{\prime} for this translation?
(A) $(-6,-4)$
(B) $(-3,2)$
(C) $(-3,9)$
(D)
$(-4,13)$

Translation rule:

93 Which rule describes a translation 3 units down?
(A) $(x, y) \rightarrow(x, y+3)$
(B) $(x, y) \rightarrow(x+3, y+3)$
(C) $(x, y) \rightarrow(x, y-3)$
(D) $(x, y) \rightarrow(x,-3 y)$ point?
(A) $(-12,10)$
(B) $(-12,5)$
(C) $(6,10)$
(D) $(6,5)$

95 Which of the following shows a reflection over the x -axis?
(A)

(B)

(c)

(D)

(A) y axis
(B) x axis
(C) $x=3$
(D) $y=3$

97 In the graph below, what is the line of reflection for $\triangle X Y Z$ and $\triangle X^{\prime} Y^{\prime} Z^{\prime}$?

(A) the x-axis
(B) the y-axis
(C) $x=2$
(D) $y=2$

98 After a dilation, triangle $\mathrm{A}(0,0), \mathrm{B}(0,4), \mathrm{C}(6,0)$ becomes triangle $A^{\prime}(0,0), B^{\prime}(0,10), C^{\prime}(15,0)$.

Choose the scale factor for this dilation.

(A) 2
(B) 2.5
(C) 1.5
(D) 3

Which transformation did Kyle perform on the triangle?
(A) dilation
(B) reflection
(C) rotation
(D) translation

100
Using the following dilated coordinates of a triangle choose the appropriate scale factor.
$\mathrm{J}:(2,4) \rightarrow \mathrm{J}^{\prime}(4,8)$
$\mathrm{K}:(1,1) \rightarrow \mathrm{K}^{‘}(2,2)$
$\mathrm{L}:(4,0) \rightarrow \mathrm{L}^{‘}(8,0)$
(A) 5
(B) 4
(C) 3
(D) 2

101 What is the difference of the surface areas of the figures shown? Note: The figures are not drawn to scale. The difference of the surface areas is $\square \mathrm{cm}^{2}$.

What is the difference in the surface areas, in square feet, of the two boxes?
(A) 2
(B) 3
(C) 21
(D) 30

103 The pair of figures is similar. Find the scale factor of the figure on the left to the figure on the right. Also find the ratio of surface areas, and ratio of volumes.

$$
\mathrm{V}=7546 \mathrm{yd}^{3}
$$

$$
\mathrm{V}=1408 \mathrm{yd}^{3}
$$

104 What is the volume of the cylinder?

Use $\quad \pi=3.14$

105 What is the approximate volume of the cone below?

(A) $70 \mathrm{~cm}^{3}$
(B) $183 \mathrm{~cm}^{3}$
(C) $549 \mathrm{~cm}^{3}$
(D) $733 \mathrm{~cm}^{3}$

106 What is the volume of this triangular right prism?

(A) $165 \mathrm{ft}^{3}$
(B) $330 \mathrm{ft}^{3}$
(C) $1,073 \mathrm{ft}^{3}$
(D) $2,145 \mathrm{ft}^{3}$

107 Find the volume of the prism.

(A) $18 \mathrm{in}^{3}$
(B) $54 \mathrm{in}^{3}$
(C) $52 \mathrm{in}^{3}$
(D) $90 \mathrm{in}^{3}$

(A) Line A
(B) Line B
(C) Line C
(D) There is no line of best fit for this data.

109 Find the slope of the line of best fit shown below.

(A) 0.5
(B) 0.7
(C) 1
(D) 2.5

Find the equation of the line of best fit for the scatter plot representing bivariate data. Points A \& B are on the line of best fit.

(A) $y=(-7 / 13) x+9$
(B) $y=(-13 / 7) x-9$
(C) $\mathrm{y}=(-7 / 13) \mathrm{x}-9$
(D) $y=(7 / 13) x+9$

