Grade 6 Jummer Review Packet 2019 -2020

WEEK-1

NAME: _____

DUE: THE FIRST DAY OF SCHOOL

The problems in this packet are designed to help you review topics from previous mathematics courses that are essential to your success in Integrated Math I. <u>You are expected to bring this completed packet to class on the first day of school.</u> In addition, this packet will count as part of your first quarter grade. **Upon returning, you will be ASSESSED on the content of this packet**. All contents outlined in the packet are Grade 6 objectives. Neatly **SHOW YOUR WORK** on a separate sheet of paper.

Edulastic

Summer Packet G 6 entering G 7 week1

Created by Edwin Victor-Louis

Collection: Private

Q1: Select the expression that is written in expanded form and is equivalent to 4(2n+3p).

- $\mathbf{A}) 20np$
- \bigcirc 8n+3p
- $\left(\mathbf{D}
 ight) 8n+12p$

Q2: Evaluate the expression $2ig(4+6^2ig)-20\div 4$ and type your answer in the box. Use paper to show your work.

Q3: Evaluate.

- 4 + 2(7) =• $6^2 + 8 \times 3 =$
- 3(2+5) 5(3) + 8 =
- $24 6 + 12 \div 2 \times 3 =$

Q4: Complete the table.

Exponential Form	Expanded Form	Standard Form
	3 imes3 imes3 imes3	
	$2\times2\times2\times2\times2$	
$(1.75)^2$		
$\left(\frac{1}{4}\right)^3$		

Q5: Match each word form with its algebraic expression.

The sum	of 10	and h	times	ρ
The sum	OI TO	and ν	, umes	О

 \longleftrightarrow

The product of 8 and b, taken from 10

 \longleftrightarrow

10 added to the product of 8 and $\it b$

 \longleftrightarrow

8 times the difference of 10 and b

--

10 less than the product of 8 and b

 \longleftrightarrow

ANSWER CHOICES

$$8(b-10)$$

$$10 - (8 + b)$$

$$8b-10$$

$$10 imes 8 + b$$

$$10 + 8b$$

$$8(10+b)$$

$$8(10 - b)$$

$$10-8b$$

Q6: Which answer choice uses the greatest common factor and the distributive property to rewrite 6a+18b in factored form?

- $ig(\mathbf{B}ig) 6(a+3b)$
- $\bigcirc ab(6+18)$
- $oldsymbol{\mathsf{D}} 3(2a+18b)$
- $lackbox{f E} 6(a+18b)$

Q7: Fill in each blank to make the equation true.

- a. 73- +24=73
- b. +35-35=59

Q8: Solve a + 12 = 36.

- (\mathbf{A}) 3
- **B** 24
- **C** 48
- \bigcirc **D** $\boxed{432}$

Q9: Use the greatest common factor and the distributive property to write an equivalent expression in factored form. Type your expression in the box.

9d + 6e =

Q10: Emma made 25 cookies. She gave c cookies to her mom. Then, she split the remaining cookies evenly among 4 friends. Which expressions represent this scenario? Select all that apply.

- A $(25+c)\div 4$
- **B** $25 \div 4 c$
- **C** $\frac{25-c}{4}$
- $oldsymbol{\mathsf{D}}$ $egin{array}{c} rac{25-4}{c} \end{array}$
- **E** $25-c \div 4$
- **F** $(25-c) \div 4$

Q11: Solve $9 = \frac{d}{3}$.

 $d = \boxed{}$

Q12: Consider the expressions 12 + 4y and 4(y+3).

Part A

What is the value of each expression when y=5?

When y=5, 12+4y=

When y=5, 4(y+3)=

Part B

Explain why the expressions 12+4y and 4(y+3) are equivalent.

0	13. Type :	an algebraid	avnrassion	for each of	the verhal	expressions.
Ų	rio. Type d	an aigebraic	expression	ioi eacii oi	trie verbai	expressions.

a. 8 less than the product of 3 and j

b. The quotient of f and the quantity g increased by $11\,$

Q14: Write an expression showing $a \div (b+2)$ as a fraction. Type your answer in the box.

$$a \div (b+2) \; = igg[$$

Q15: Rewrite each expression in standard form, using the fewest number of symbols and characters possible and type them into the boxes.

$$2 \cdot 3 \cdot 7 \cdot q \cdot t$$

 $9fg \cdot 6jk$

Q16: The sketch shows three adjacent angles.

Part A

Which equation can be used to determine the value of y?

$$ig($$
 $m{A}ig)$ $180\degree=36\degree-28\degree-y\degree$

$$oldsymbol{f B} oldsymbol{3}60\degree = 28\degree + 36\degree + y\degree$$

$$oldsymbol{\mathsf{C}} 36\degree + y\degree + 28\degree = 90\degree$$

$$oxed{{\sf D}} 28\degree + y\degree + 36\degree = 180\degree$$

Part B

What is the value of y?

$$y =$$

- **Q17:** Luca runs 8 miles each week.
 - a. Which table correctly represents this scenario?

(A)	Number of Weeks	Total Number of Miles
	0	0
	1	8
	2	16
	3	24
	4	32

(B)	Number of Weeks	Total Number of Miles
	0	8
	1	16
	2	24
	3	32
	4	40

(c)	Total Number of Miles	Number of Weeks
	0	0
	1	8
	2	16
	3	24
	4	32

D	Total Number of Miles	Number of Weeks
	0	8
	1	16
	2	24
	3	32
	4	40

b.	Type an equation to represent the total number of miles Luca runs given the number of weeks.	Let
m	represent the total number of miles Luca runs and let w represent the number of weeks.	

1		
1		
I		

c. What is the dependent variable? Select your answer from the drop-down list. Explain your reasoning.

d. Determine the	number of weeks it takes Luca to run 96 miles.	
It takes Luca	weeks to run 96 miles.	
a. Number of weeks		
Total num	nber of miles	